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Abstract

Elevated body iron stores are associated with morbidity and mortality due to oxidative stress. 

Hereditary hemochromatosis, a common condition caused by HFE gene mutations, can lead to 

excess iron storage and disease but clinical penetrance of HFE gene mutations is low and many 

people with elevated iron stores lack HFE mutations. We analyzed data from the 

Hemochromatosis and Iron Overload Screening Study to assess the relationship among HFE 

genotype (individuals with either homozygous or compound heterozygous status for C282Y 

and/or H63D HFE mutations were defined as genotype positive, or G+), elevated iron phenotype 

(individuals exceeding gender-specific transferrin saturation and serum ferritin threshold levels 

were considered phenotype positive, or P+), and leukocyte telomere length, a marker of biological 

aging and cumulative oxidative stress. In unadjusted analyses in comparison to individuals who 

were G−P−, G+P− were not significantly different (OR 0.74; 95% CI 0.26–2.04), while the G+P+ 

(OR 2.03; 95% CI 1.15–3.56), and G−P+ (OR 2.24; 95% CI 1.5–3.29) had increased risk of short 

telomeres (<=25th percentile) rather than long telomeres (>=75th percentile). In analyses adjusting 

for age, gender, and race/ethnicity, the effect of individuals with elevated iron phenotypes having 

short telomeres persisted with G+P+ individuals (OR 1.94; 95% CI 1.02–3.72), and G−P+ 

individuals (OR 2.17; 95% CI 1.39–3.39) being significantly different from the G−P− group. In 

conclusion, elevated iron phenotype, but not HFE genotype, was associated with shortened 
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telomeres. Further studies will be needed to determine whether telomere length provides a marker 

for morbidities specifically associated with iron overload.

Introduction

Certain inherited genetic mutations are associated with hereditary hemochromatosis (HH), a 

condition of excess body iron [1,2]. Type 1 HH, or HFE hemochromatosis, is one of the 

most common autosomal recessive disorders in the US [3,4]. Mutations on the HFE gene, 

especially the C282Y homozygous variant found most often in populations of northern 

European descent, can lead to excessive dietary iron absorption and progressive 

accumulation of iron in the body, potentially reaching toxic levels by middle life [4,5]. Other 

HFE mutations, like H63D, and non-HFE HH mutations (Types 2,3, and 4 HH) are likely 

more common in non-northern European populations than the C282Y mutation [1,6–15]. 

The excess iron is deposited in multiple organs, causing oxidative tissue damage which can 

lead to health conditions, including cirrhosis of the liver, cancer, and cardiomyopathy [16–

21]. However, once the diagnosis is made, liver and heart function can be improved with 

periodic phlebotomy or erythrocytapheresis to remove excess iron [22–24].

Despite the common usage of HFE mutation identification to assess risk of clinical iron 

overload in at-risk individuals with potential iron overload, not all persons with elevated 

body iron stores have mutations in the HFE gene and elevated body iron stores are still 

associated with an increased risk of morbidity (cancer, cardiovascular disease, inflammation, 

and dementia) and mortality [1,2,25–30].

Excess iron deposition is associated with biomolecular oxidative damage and mimics 

physiologic changes that occur with aging and leads to age-related conditions [31–35]. 

Telomere length has emerged as a marker for cumulative oxidative stress and biological 

aging, which is the key to age-related morbidity [36–38]. Shortened telomere length has 

been associated with shorter life span as well as a wide variety of age-related diseases and 

conditions, including cardiovascular disease, diabetes, insulin resistance, and hypertension 

[39–41].

Because not everyone with HFE gene mutations develops elevated iron stores and not 

everyone with elevated body iron stores has HFE gene mutations, the relationship among 

HFE gene mutations, elevated body iron, and cumulative oxidative stress represented by 

telomere length is uncertain. The purpose of this study was to examine the relationship 

among HFE genotypes, elevated iron phenotypes, and telomere length.

Methods

This study used existing data included in the Hemochromatosis and Iron Overload Screening 

(HEIRS) Study and computed additional assays of the linked, stored specimens. The HEIRS 

Study evaluated a multicenter, multiracial-ethnic sample of 101,168 primary care adults 25 

years of age or older in the United States and Canada. Interview data were obtained from 

initial screening of all participants and a subsequent Comprehensive Clinical Exam (CCE) 

for C282Y homozygotes, non-C282Y homozygote participants with elevations of serum 
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biochemical tests of iron status, and control subjects. DNA specimens collected from each 

participant during the CCE were obtained from the Biologic Specimen and Data Repository 

Information Coordinating Center (BioLINCC) at the National Heart Lung and Blood 

Institute and used for the telomere assays. The data obtained in the present study were then 

merged with the other variables contained in the HEIRS data sets.

Details of study design and sampling methods have been published and can be found in the 

HEIRS Protocol [42,43].

Subjects

Of the 1,157 subject DNA specimens sent to the investigators by BioLINCC, 1,146 samples 

had verified telomere values, of which, 137 (12% of the original sample) were excluded due 

to potential risk of misclassification due to phlebotomy treatment. Individuals from the CCE 

who could be classified into one of four groups representing both HFE genotype and 

phenotypic expression of elevated body iron (elevated transferrin saturation (TS), and serum 

ferritin (SF) levels) were identified. Our final sample for analysis consisted of 1,009 

subjects.

Elevated iron phenotype

Subjects’ phenotype status was determined by gender-specific threshold values for serum 

biochemical tests for iron status. Males were considered “phenotype positive” (P+) for the 

elevated iron phenotype if their TS level was 50% or above and SF level was above 300 

ng/mL. Females were considered “phenotype positive” (P+) for the elevated iron phenotype 

if their TS level was 45% or above and SF level was above 200 ng/mL. Individuals who had 

SF and TS levels below these gender-specific thresholds were considered “phenotype 

negative” (P−) for the elevated iron phenotype.

HFE genotype

Subjects were considered to be “genotype positive” (G+) for HFE genotype if they were 

homozygous or compound heterozygous for HFE gene mutations, expressed as C282Y/

C282Y, H63D/H63D, and C282Y/H63D alleles, respectively. H63D homozygotes were 

considered G+ as the genotype has been associated with elevated body iron indicators in 

certain race-ethnicities [7–9]. Compound heterozygotes were considered G+ as the genotype 

has been associated with elevated body iron indicators relative to wild-type [44]. All other 

subjects were defined as “genotype negative” (G−).

Analysis groups

The first of four groups consisted of individuals who were G+P+. The second group 

consisted of individuals that were G−P+. These were individuals with either one copy of 

either the C282Y or H63D allele (heterozygous carriers of HFE mutation) or neither allele 

affected by the two common HFE gene mutations and were included in the CCE because 

they had both elevated TS and elevated SF.

The third group consisted of individuals who were G+P−. This group was composed of 

persons homozygous or compound heterozygous for the C282Y or H63D alleles with 
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normal TS (<50% in men and <45% in women) and SF (<300 ng/mL in men, and <200 

ng/mL in women).

The fourth group consisted of individuals who were G−P−. These were individuals who had 

no allele mutations and normal TS and SF. They participated in the CCE as control subjects. 

We randomly selected individuals from all of the groups except for the G+P− group which 

had a small sample size. For the G+P− group, we used the specimens from all available 

subjects.

Telomere length via real time PCR analysis

Leukocyte telomere length was measured with a quantitative PCR-based technique (qPCR) 

that compares telomere repeat sequence copy number to single-copy gene (36b4) copy 

number in a given sample [45]. Triplicate DNA samples were amplified in parallel in 20 μL 

reaction using SsoFast EvaGreen real-time PCR supermix (Bio-Rad, Hercules, USA) 

containing 20 ng of sample DNA. The telomere-specific reaction included 500 nM of 

telomere-specific primers (forward: 

5′GGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGT T3′; reverse: 

5′GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACC CT3′). The 36b4 reaction 

included 300 nM of the forward (5′CAGCAAG TGGGAAGGTGTAATCC3′) and reverse 

(5′CCCATTCTATCATCAACGG GTACAA3′) primers. The qPCR/primer supermix (19 

uL) was aliquoted into PCR multiwell plates using an EpMotion 5070 robotic liquid 

handling unit (Eppendorf, Germany), and then 1 uL of sample DNA (20 ng) was added to 

each well. All qPCR reactions were run using a CFX96 real-time thermal cycler (Bio-Rad). 

The thermal cycling profile for both amplicons began with 95°C incubation for 3 min and 

then 30 cycles of 10 sec at 95°C and 1 min at 58°C. The specificity of all amplifications was 

determined by melting curve analysis. A total of 14 study samples and 2 calibrator samples 

(all in triplicate) were processed per plate.

Analysis of qPCR data—Analysis of sample telomere length and 36b4 expression levels 

was done using the PCR Miner algorithm developed by Zhao and Fernald [46]. Values 

derived for telomere (T) were normalized for each sample with the corresponding 

expression of 36b4 gene (S) as T/S ratio.

Telomere length status was defined according to intra-sample telomere length percentiles as 

the bottom, or “short,” quartile (<=25th percentile), middle quartiles (26–74th percentile), 

and top, or “long,” quartile (>=75th percentile). The “short” quartile was considered to have 

more cumulative oxidative stress than the “long” quartile [37,38].

Covariates

Demographics—Age is associated with both increasing body iron stores and shorter 

telomeres [47,48]. For analysis, age was analyzed as a continuous variable in the logistic 

regression model. Subjects’ race-ethnicity was categorized as either Non-Hispanic White or 

Other, as hemochromatosis-related genetic mutations differ by race-ethnicity [6–8,11,14,15]. 

Subjects’ gender was categorized as either male or female, as iron stores and telomere length 

may be associated with gender [49,50]. Subjects’ health insurance status was categorized as 

Mainous et al. Page 4

Am J Hematol. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



either “insured” or “uninsured” and education attainment as “less than high school,” “high 

school,” or “more than high school.”

Statistical analysis

Analyses were conducted using SAS 9.2 (SAS Institute, Cary NC). Bivariate analyses with 

Chi-square and Fisher’s exact test for rare outcomes were conducted to compare genotype-

phenotype groups. An adjusted multivariate logistic regression model (N = 511) for the odds 

of having “Short telomere” versus “Long telomere” was generated to compare genotype-

phenotype status after controlling for significant differences in covariates among groups 

(age, race-ethnicity, and gender). Intra-sample telomere quartiles (< =25th percentile and > 

=75th percentile) were compared to examine extremes in telomere length to detect an 

association between genotype-phenotype group and telomere quartile if one were present. 

Age was included in the model because it is linked to biological aging and telomere length 

[47,48]. Although education and insurance were examined to describe the individuals, they 

were not entered into the multivariate model because of their lack of previously identified 

relationship with telomere length.

An additional subgroup analysis was conducted of only the C282Y homozygotes. In this 

subgroup analysis, we examined elevated iron phenotype with telomere length through 

several strategies. First, t-tests were conducted comparing mean telomere length between 

individuals who had the elevated iron phenotype and those who did not have elevated iron. 

Second, we computed t-tests comparing individuals with SF > 1000 ng/mL with those with 

non-elevated SF (<300 ng/mL in men, and <200 ng/mL in women).

Results

Demographic characteristics of the groups under investigation are featured in Table I. 

Genotype-phenotype groups were significantly different by gender, race-ethnicity, and 

health insurance. Groups carrying the HFE mutations were much more likely to be Non-

Hispanic White than groups without HFE mutations. No differences were observed between 

genotype-phenotype groups in regards to education status.

In a sub-analysis of the C282Y/C282Y subgroup (n = 82) (data not shown), although the 

mean telomere length was shorter in the elevated iron group (272.2) than the phenotype 

negative group (290.1), the relationship in this small subgroup was not statistically 

significant (P = 0.44). Similarly, among individuals with SF levels >1,000 ng/mL (n = 11) 

telomere length was shorter (255.3) than those with non-elevated SF (<300 ng/mL in men, 

and <200 ng/mL in women) (n = 29) whose mean telomere length was 292.5 but once again 

this did not reach statistical significance (P = 0.29).

Elevated iron phenotype, but not HFE genotype, was associated with shorter telomeres in 

bivariate analyses (Table II). Elevated iron phenotype, but not hemochromatosis genotype, 

was associated with shorter telomeres in both crude and adjusted logistic regression models 

(Table III). Adjusting for age, gender, and race-ethnicity attenuated the relationship slightly 

but both groups with elevated iron phenotype (G+P+ and G−P+) remained significantly 

different from the control group (G−P−) in terms of the likelihood of having short telomeres.
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Discussion

The results of this study showed that elevated serum biochemical tests of iron status were 

associated with shorter telomere length. To the best of our knowledge, this is the first study 

to examine telomere length in relation to HFE genotypes or elevated serum tests of iron 

status. The result was independent of HFE gene mutations and existed even after controlling 

for age, gender, and race-ethnicity. HFE mutations were not significantly associated with 

telomere length in this sample of adults.

Regarding HFE genotype, the results further support the idea of gene–environment 

interactions in that the HFE genotype appears to primarily impact health through the 

pathway of elevated body iron and subsequently increased oxidative stress [2]. It is unclear 

whether lifestyle variables may increase the propensity for phenotypic expression among 

these individuals. Finding interventions to minimize the expression of the genes and control 

iron levels is a reasonable approach to health promotion in individuals with HFE genotypes.

The results also indicate that individuals who did not have the HFE gene mutation but had 

elevated iron had shorter telomeres. This suggests that there are other precursors to elevated 

iron in the general population that need to be monitored beyond the HFE gene mutations. 

Previous research indicated that although women who used multivitamins had longer 

telomere length than those who didn’t, women who used iron supplements had a shorter 

telomere length than nonusers [51]. There is some evidence that certain non-HFE gene 

mutations associated with elevated iron stores are more common in different ethnic groups 

[1,6–12]. It is possible that other unidentified genotypes associated with elevated iron were 

present in the genotype negative group and that these groups attenuated the relationship 

between genotype and telomere length.

Though C282Y homozygosity is associated with more severely elevated body iron stores 

and greater incidence of clinical iron overload than other HFE mutations, many populations 

with low or no occurrence of this mutation, especially non-northern Europeans, experience 

elevated body iron stores [6–15]. It is possible that other HFE mutations, such as H63D 

homozygosity, and non-HFE mutations, such as Types 2,3, and 4 HH (related to gene 

mutations on the hepcidin, TfR2, and Fpn genes, respectively), are contributing to elevated 

iron storage in persons of non-northern European descent [1,2]. However, given that 

elevated body iron, even below clinical iron overload, is associated with greater morbidity, 

mortality, and shorter telomeres, it is important to discover environmental factors 

contributing to elevated iron storage in multiracial-ethnic groups [25–32].

These results in humans focusing on leukocyte telomere length are somewhat different from 

evidence from a rat model examining liver cell telomere length. In a rat model of iron 

overload examining liver cell telomere length, iron overloaded rats had significantly 

increased telomerase activity but no difference in telomere length [52]. As a response to iron 

overload, enhanced telomerase activity may be a response to iron-induced damage in 

specific organs.

There are several limitations to this study. First, although the H63D HFE gene mutation is 

commonly used as an indicator of hemochromatosis, its relationship to iron overload is less 
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clear than that of the C282Y HFE gene mutation [7,44]. In this study, both genotypes were 

evaluated together as well as separately, in relationship to elevated iron with the results 

suggesting that combining the two did not lead to a bias in the results. Second, this study is 

cross-sectional and thus allows us to only impute associations. Telomere length evaluates 

cumulative exposure to oxidative stress and in this study is significantly associated with 

currently elevated iron. Future studies will increase our knowledge regarding changes in iron 

levels and changes in the slope of telomere shortening. Third, we did not control for lifestyle 

variables and some outcome conditions like diabetes, which may be associated with both 

elevated iron and shorter telomere length. These variables may be in the causal pathway 

between elevated iron and telomere length [37,53,54].

In conclusion, this study suggests that the presence of HFE genotypes does not have an 

inherent physiologic impact on telomere length, whereas elevated body iron test results are 

associated with shorter telomere length. Given the consistent association observed between 

elevated body iron and morbidity and mortality, it is important to discover the physiological 

and environmental factors contributing to iron loading to prevent future disease [25–30].
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TABLE II

Genotype or Phenotype Status by Telomere Length (%)

Short telomere (< =25th pctl) Long telomere (> =75th pctl) P-value

Sample size = 511 257 254 –

Total 50.3 49.7 –

HFE genotype 0.67

 Positive (n = 82) 52.4 47.6

 Negative (n = 429) 49.9 50.1

Elevated iron phenotype <0.0001

 Positive (n = 270) 59.6 40.4

 Negative (n = 241) 39.8 60.2
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TABLE III

Logistic Regression Predicting Short Telomere Length by Genotype Phenotype Group (n = 511)

Crude model Odds ratio 95% Confidence interval

Genotype–henotype

 G+ P+ (n = 64) 2.03 1.15–3.56

 G+ P− (n = 18) 0.74 0.26–2.04

 G− P+ (n = 206) 2.24 1.5–3.29

 G− P− (n = 223) – Reference

Adjusted modela Odds ratio 95% Confidence interval

Genotype–henotype

G+ P+ (n = 64) 1.94 1.02–3.72

G+ P− (n = 18) 1.27 0.42–3.89

G− P+ (n = 206) 2.17 1.39–3.39

G− P− (n = 223) – Reference

a
Adjusted for age group, gender, and race-ethnicity.
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